Education : |
Ph.D. Mathematics, National Tsing Hua University |
Experience : |
Associate Professor, National Taipei University of Education, 2023/08~ |
|
Assistant Professor, National Taipei University of Education, 2020/02~2023/07 |
Editor in Applied Mathematics E-Notes 2020/01~ | |
|
Assistant Professor, National Formosa University, 2017/02~2020/01 |
|
Postdoctoral Research Fellow, National Tsing Hua University, 2014/02~2017/01 |
S.-Y. Huang and S.-H. Wang, Bifurcation curves for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator, accepted and to appear in J. Differential Equations. (SCI)
S.-Y. Huang, Classification and evolution of bifurcation curves of semipositone problem with Minkowski-curvature operator and its applications, J. Differential Equations, 400 (2024), 278–311. (SCI)
S.-Y. Huang, W.-H. Lee and M.-H. Ho, The multiplicity of positive solutions for a certain logistic problem. Appl. Math. E-Notes 23 (2023), 572–576.
S.-Y. Huang, Bifurcation curves in Minkowski-curvature problem with nonlinearity, Appl. Math. E-Notes, 23(2023), 544–559.
S.-Y. Huang and P.-H. Hsieh, Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems, Czech. Math. J, 73 (2023), 1081–1098. (SCI)
S.-Y. Huang and P.-H. Hsieh, Bifurcation diagrams for two-point boundary value problem with quadratic nonlinearity, Appl. Math. E-Notes, 22(2022), 252–264.
S.-Y. Huang and M.-S. Hwang, Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity, Electron. J. Qual. Theory Differ. Equ., 41(2021), 1–29. (SCI)
S.-Y. Huang, Global bifurcation diagrams for Liouville-Bratu-Gelfand problem with Minkowski-curvature operator, Journal of Dynamics and Differential Equations, (2021), 1–16. (SCI)
S.-Y. Huang, K.-C. Hung and S.-H. Wang, A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem, Electron. J. Qual. Theory Differ. Equ., 99(2019), 1–25. (SCI)
S.-Y. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst. A., 39 (2019), 3443–3462. (SCI)
S.-Y. Huang, Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity, Commun Pure Appl. Anal., 17(2019), 3267–3284. (SCI)
C.-C. Tsai, S.-H. Wang and S.-Y. Huang, Classification and evolution of bifurcation curves for a one-dimensional Neumann–Robin problem and its applications, Electron. J. Qual. Theory Differ. Equ., 85 (2018), 1–30. (SCI)
S.-Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differential Equations, 264 (2018), 5977–6011. (SCI)
S.-Y. Huang, Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application, Commun Pure Appl. Anal., 17 (2018), 1271–1294. (SCI)
K.-C. Hung, S.-Y. Huang and S.-H. Wang, A global bifurcation theorem for a positone multiparameter problem and its appllication, Discrete Contin. Dyn. Syst. A, 37 (2017), 5127–5149. (SCI)
S.-Y. Huang and S.-H. Wang, A variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory, Electron. J. Qual. Theory Differ. Equ., 94 (2016), 1–12. (SCI)
S.-Y. Huang and S.-H. Wang, Proof of a Conjecture for the One-dimensional Perturbed Gelfand Problem from Combustion Theory, Arch Ration. Mech. Anal., 222 (2016), 769–825. (SCI)
S.-Y. Huang and S.-H. Wang, An evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity, Taiwanese J. Math., 20 (2016), 639–661. (SCI)
S.-Y. Huang and S.-H. Wang, On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion, Discrete Contin. Dyn. Syst. A, 35 (2015), 4839–4858. (SCI)
S. Y. Huang and S. S. Cheng, Existence of eventually positive solutions of higher order impulsive delay differential equations, Rocky Mountain J. Math., 45 (2015), 237–271. (SCI)
J. J. Lin, S. Y. Huang and S. S. Cheng, Explicit periodic travelling waves for a discrete lambda-omega reaction-diffusion system, J. Difference Equ. Appl., 9 (2014), 1289–1306. (SCI)
S. Y. Huang and S. S. Cheng, Existence of periodic traveling wave solutions of non-autonomous reaction diffusion system with lambda omega type, J. Math. Anal. Appl., 409 (2014), 607–613. (SCI)
S. Y. Huang and S. S. Cheng, Necessary and sufficient conditions of nonoscillatory solutions of impulsive delay differential equations, Electron. J. Qual. Theory Differ. Equ., 38 (2013), 1–18. (SCI)
S. Y. Huang and S. S. Cheng, Comparison theorems and necessary/sufficient conditions for nonoscillatory solutions of forced impulsive delay differential equations, Ukrainian Math. J., 64 (2013), 1403–1420. (SCI)
S. Y. Huang and S. S. Cheng, A theorem on characteristic equations and its application to oscillation of functional differential equations, Appl. Math. E-Notes, 13 (2013), 183–207.
G. Röst, S. Y. Huang, and L. Székely, On a SEIR epidemic model with delay, Dyn. Syst. Appl., 21 (2012), 33–48. (SCI)
S. Y. Huang and S. S. Cheng, Eventually positive solutions for nonlinear impulsive differential equations with delays, Ann. Polon. Math., 104 (2012), 43–70. (SCI)
S. Y. Huang and S. S. Cheng, Absence of positive roots of sextic polynomials, Taiwanese J. Math., 15 (2011), 2609–2646. (SCI)
S. Y. Huang and S. S. Cheng, Absence of real roots of characteristic functions of functional differential equations with nine real parameters, Taiwanese J. Math., 15 (2011), 395–432. (SCI)
S. Y. Huang and S. S. Cheng, Schur stability regions for complex quadratic polynomials, Internat. J. Math. Ed. Sci. Tech., 41 (2010), 950–964.
S. Y. Huang and S. S. Cheng, Alternate derivations of the stability region of a difference equation with two delays, Appl. Math. E-Notes, 9 (2009), 225–253.